2000年早期,Robbie Allen在写一本关于网络和编程的书的时候,深有感触。他发现,互联网很不错,但是资源并不完善。那时候,博客已经开始流行起来。但是,Youtube还不是很普遍,Quora、 Twitter和播客同样用者甚少。
在他转向人工智能和机器学习10年过后,局面发生了天翻地覆的变化:网上资源非相当丰富,以至于很多人出现了选择困难,不知道该从哪里开始(和停止)学习!
为了使大家能够更加便利地使用这些资源,Robbie Allen浏览查看各种各样的资源,把它们打包整理了出来。AI科技大本营在此借花献佛,和大家共同分享这些资源。通过它们,你将会对人工智能和机器学习有一个基本的认知。
资源目录:
□ 知名研究者
□ 研究机构
□ 视频课程
□ YouTube
□ 博客
□ 媒体作家
□ 书籍
□ Quora主题栏
□ Github库
□ 播客
□ 实事通讯媒体
□ 会议
□ 论文
研究者
大多数知名的人工智能研究者在网络上的曝光率还是很高的。下面列举了20位知名学者,以及他们的个人网站链接,维基百科链接,推特主页,Google学术主页,Quora主页。他们中相当一部分人在Reddit或Quora上面参与了问答。
■Sebastian Thrun
个人官网:
https://robots.stanford.edu/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/SebastianThrun
Google Scholar:
https://scholar.google.com/citations?user=7K34d7cAAAAJhl=enoi=ao
Quora:
https://www.quora.com/profile/Sebastian-Thrun
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/v59z3/iam_sebastian_thrun_stanford_professor_google_x/
■Yann LeCun
个人官网:
https://yann.lecun.com/
Wikipedia:
https://en.wikipedia.org/wiki/Sebastian_Thrun
Twitter:
https://twitter.com/ylecun?
Google Scholar:
https://scholar.google.com/citations?user=WLN3QrAAAAAJhl=en
Quora:
https://www.quora.com/profile/Yann-LeCun
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Nando de Freitas
个人官网:
https://www.cs.ubc.ca/~nando/
Wikipedia:
https://en.wikipedia.org/wiki/Nando_de_Freitas
Twitter:
https://twitter.com/NandoDF
Google Scholar:
https://scholar.google.com/citations?user=nzEluBwAAAAJhl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/3y4zai/ama_nando_de_freitas/
■Andrew Ng
个人官网:
https://www.andrewng.org/
Wikipedia:
https://en.wikipedia.org/wiki/Andrew_Ng
Twitter:
https://twitter.com/AndrewYNg
Google Scholar:
https://scholar.google.com/citations?use
Quora:
https://www.quora.com/profile/Andrew-Ng"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Daphne Koller
个人官网:
https://ai.stanford.edu/users/koller/
Wikipedia:
https://en.wikipedia.org/wiki/Daphne_Koller
Twitter:
https://twitter.com/DaphneKoller?lang=en
Google Scholar:
https://scholar.google.com/citations?user=5Iqe53IAAAAJ
Quora:
https://www.quora.com/profile/Daphne-Koller
Quora Session:
https://www.quora.com/session/Daphne-Koller/1
■Adam Coates
个人官网:
https://cs.stanford.edu/~acoates/
Twitter:
https://twitter.com/adampaulcoates
Google Scholar:
https://scholar.google.com/citations?user=bLUllHEAAAAJhl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/32ihpe/ama_andrew_ng_and_adam_coates/
■Jürgen Schmidhuber
个人官网:
https://people.idsia.ch/~juergen/
Wikipedia:
https://en.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
Google Scholar:
https://scholar.google.com/citations?user=gLnCTgIAAAAJhl=en
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2xcyrl/i_am_j%C3%BCrgen_schmidhuber_ama/
■Geoffrey Hinton
Wikipedia:
https://en.wikipedia.org/wiki/Geoffrey_Hinton
Google Scholar:
https://www.cs.toronto.edu/~hinton/
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2lmo0l/ama_geoffrey_hinton/
■Terry Sejnowski
个人官网:
https://www.salk.edu/scientist/terrence-sejnowski/
Wikipedia:
https://en.wikipedia.org/wiki/Terry_Sejnowski
Twitter:
https://twitter.com/sejnowski?lang=en
Google Scholar:
https://scholar.google.com/citations?user=m1qAiOUAAAAJhl=en
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2id4xd/we_are_barb_oakley_terry_sejnowski_instructors_of/
■Michael Jordan
个人官网:
https://people.eecs.berkeley.edu/~jordan/
Wikipedia:
https://en.wikipedia.org/wiki/Michael_I._Jordan
Google Scholar:
https://scholar.google.com/citations?user=yxUduqMAAAAJhl=en"
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/2fxi6v/ama_michael_i_jordan/
■Peter Norvig
个人官网:
https://norvig.com/
Wikipedia:
https://en.wikipedia.org/wiki/Peter_Norvig
Google Scholar:
https://scholar.google.com/citations?user=Ol0vcWgAAAAJhl=en
Reddit AMA:
https://www.reddit.com/r/blog/comments/b8aln/peter_norvig_answers_your_questions_ask_me/
■Yoshua Bengio
个人官网:
https://www.iro.umontreal.ca/~bengioy/yoshua_en/
Wikipedia:
https://en.wikipedia.org/wiki/Yoshua_Bengio
Google Scholar:
https://scholar.google.com/citations?user=kukA0LcAAAAJhl=en
Quora:
https://www.quora.com/profile/Yoshua-Bengio
Reddit AMA:
https://www.reddit.com/r/MachineLearning/comments/1ysry1/ama_yoshua_bengio/
■Ina Goodfellow
个人官网:
https://www.iangoodfellow.com/
Wikipedia:
https://en.wikipedia.org/wiki/Ian_Goodfellow
Twitter:
https://twitter.com/goodfellow_ian
Google Scholar:
https://scholar.google.com/citations?user=iYN86KEAAAAJhl=en
Quora:
https://www.quora.com/profile/Ian-Goodfellow
Quora Session:
https://www.quora.com/session/Ian-Goodfellow/1
■Andrej Karpathy
个人官网:
https://karpathy.github.io/
Twitter:
https://twitter.com/karpathy
Google Scholar:
https://scholar.google.com/citations?user=l8WuQJgAAAAJhl=en
Quora:
https://www.quora.com/profile/Andrej-Karpathy
Quora Session:
https://www.quora.com/session/Andrej-Karpathy/1
■Richard Socher
个人官网:
https://www.socher.org/
Twitter:
https://twitter.com/RichardSocher
Google Scholar:
https://scholar.google.com/citations?user=FaOcyfMAAAAJhl=en
Interview:
https://www.kdnuggets.com/2015/10/metamind-mastermind-richard-socher-deep-learning-interview.html
■Demis Hassabis
个人官网:
https://demishassabis.com/
Wikipedia:
https://en.wikipedia.org/wiki/Demis_Hassabis
Twitter:
https://twitter.com/demishassabis
Google Scholar:
https://scholar.google.com/citations?user=dYpPMQEAAAAJhl=en
Interview:
https://www.bloomberg.com/features/2016-demis-hassabis-interview-issue/
■Christopher Manning
个人官网:
https://nlp.stanford.edu/~manning/
Twitter:
https://twitter.com/chrmanning
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJhl=en"
■Fei-Fei Li
个人官网:
https://vision.stanford.edu/people.html
Wikipedia:
https://en.wikipedia.org/wiki/Fei-Fei_Li
Twitter:
https://twitter.com/drfeifei
Google Scholar:
https://scholar.google.com/citations?user=1zmDOdwAAAAJhl=en"
Ted Talk:
https://www.ted.com/talks/fei_fei_li_how_we_re_teaching_computers_to_understand_pictures/tran?language=en
■François Chollet
个人官网:
https://scholar.google.com/citations?user=VfYhf2wAAAAJhl=en
Twitter:
https://twitter.com/fchollet
Google Scholar:
https://scholar.google.com/citations?user=VfYhf2wAAAAJhl=en
Quora:
https://www.quora.com/profile/Fran%C3%A7ois-Chollet
Quora Session:
https://www.quora.com/session/Fran%C3%A7ois-Chollet/1
■Dan Jurafsky
个人官网:
https://web.stanford.edu/~jurafsky/
Wikipedia:
https://en.wikipedia.org/wiki/Daniel_Jurafsky
Twitter:
https://twitter.com/jurafsky
Google Scholar:
https://scholar.google.com/citations?user=uZg9l58AAAAJhl=en
■Oren Etzioni
个人官网:
https://allenai.org/team/orene/
Wikipedia:
https://en.wikipedia.org/wiki/Oren_Etzioni
Twitter:
https://twitter.com/etzioni
Google Scholar:
https://scholar.google.com/citations?user=XF6Yk98AAAAJhl=en
Quora:
https://scholar.google.com/citations?user
Reddit AMA:
https://www.reddit.com/r/IAmA/comments/2hdc09/im_oren_etzioni_head_of_paul_allens_institute_for/
机 构
网络上有大量的知名机构致力于推进人工智能领域的研究和发展。
以下列出的是同时拥有官方网站/博客和推特账号的机构。
■OpenAI
官网:https://openai.com/
Twitter:https://twitter.com/OpenAI
■DeepMind
官网:https://deepmind.com/
Twitter:https://twitter.com/DeepMindA
■Google Research
官网:https://research.googleblog.com/
Twitter:https://twitter.com/googleresearch
■AWS AI
官网:https://aws.amazon.com/blogs/ai/
Twitter:https://twitter.com/awscloud
■Facebook AI Research
官网:https://research.fb.com/category/facebook-ai-research-fair/
■Microsoft Research
官网:https://www.microsoft.com/en-us/research/
Twitter:https://twitter.com/MSFTResearch
■Baidu Research
官网:https://research.baidu.com/
Twitter:https://twitter.com/baiduresearch?lang=en
■IntelAI
官网:https://software.intel.com/en-us/ai
Twitter:https://twitter.com/IntelAI
■AI2
官网:https://allenai.org/
Twitter:https://twitter.com/allenai_org
■Partnership on AI
官网:https://www.partnershiponai.org/
Twitter:https://twitter.com/partnershipai
视频课程
以下列出的是一些免费的视频课程和教程。
■Coursera
— Machine Learning (Andrew Ng):
https://www.coursera.org/learn/machine-learning#syllabus
■Coursera
— Neural Networks for Machine Learning (Geoffrey Hinton):
https://www.coursera.org/learn/neural-networks
■Udacity
— Intro to Machine Learning (Sebastian Thrun):
https://classroom.udacity.com/courses/ud120
■Udacity
— Machine Learning (Georgia Tech):
https://www.udacity.com/course/machine-learning--ud262
■Udacity
——Deep Learning (Vincent Vanhoucke):
https://www.udacity.com/course/deep-learning--ud730
■Machine Learning (mathematicalmonk):
https://www.youtube.com/playlist?list=PLD0F06AA0D2E8FFBA
■Practical Deep Learning For Coders
——Jeremy Howard Rachel Thomas:
https://course.fast.ai/start.html
■Stanford CS231n
——Convolutional Neural Networks for Visual Recognition (Winter 2016) :
https://www.youtube.com/watch?v=g-PvXUjD6qglist=PLlJy-eBtNFt6EuMxFYRiNRS07MCWN5UIA
(class link):https://cs231n.stanford.edu/
■Stanford CS224n
——Natural Language Processing with Deep Learning (Winter 2017) :
https://www.youtube.com/playlist?list=PL3FW7Lu3i5Jsnh1rnUwq_TcylNr7EkRe6
(class link):https://web.stanford.edu/class/cs224n/
■Oxford Deep NLP 2017 (Phil Blunsom et al.):
https://github.com/oxford-cs-deepnlp-2017/lectures
■Reinforcement Learning (David Silver):
https://www0.cs.ucl.ac.uk/staff/d.silver/web/Teaching.html
■Practical Machine Learning Tutorial with Python (sentdex):
https://www.youtube.com/watch?list=PLQVvvaa0QuDfKTOs3Keq_kaG2P55YRn5vv=OGxgnH8y2NM
YouTube
以下,我列举了一些YoutTube频道和用户,它们的主要内容是人工智能或者机器学习。这里按照受欢迎程度列举如下:
■sentdex
(225K subscribers, 21M views):
https://www.youtube.com/user/sentdex
■Artificial Intelligence A.I.
(7M views):
https://www.youtube.com/channel/UC-XbFeFFzNbAUENC8Ofpn3g
■Siraj Raval
(140K subscribers, 5M views):
https://www.youtube.com/channel/UCWN3xxRkmTPmbKwht9FuE5A
■Two Minute Papers
(60K subscribers, 3.3M views):
https://www.youtube.com/user/keeroyz
■DeepLearning.TV
(42K subscribers, 1.7M views):
https://www.youtube.com/channel/UC9OeZkIwhzfv-_Cb7fCikLQ
■Data School
(37K subscribers, 1.8M views):
https://www.youtube.com/user/dataschool
■Machine Learning Recipes with Josh Gordon
(324K views):
https://www.youtube.com/playlist?list=PLOU2XLYxmsIIuiBfYad6rFYQU_jL2ryal
■Artificial Intelligence — Topic
(10K subscribers):
https://www.youtube.com/channel/UC9pXDvrYYsHuDkauM2fLllQ
■Allen Institute for Artificial Intelligence (AI2)
(1.6K subscribers, 69K views):
https://www.youtube.com/channel/UCEqgmyWChwvt6MFGGlmUQCQ
■Machine Learning at Berkeley
(634 subscribers, 48K views):
https://www.youtube.com/channel/UCXweTmAk9K-Uo9R6SmfGtjg
■Understanding Machine Learning — Shai Ben-David
(973 subscribers, 43K views):
https://www.youtube.com/channel/UCR4_akQ1HYMUcDszPQ6jh8Q
■Machine Learning TV
(455 subscribers, 11K views):
https://www.youtube.com/channel/UChIaUcs3tho6XhyU6K6KMrw
博 客
■Andrej Karpathy
博客:https://karpathy.github.io/
Twitter:https://twitter.com/karpathy
■i am trask
博客:https://iamtrask.github.io/
Twitter:https://twitter.com/iamtrask
■Christopher Olah
博客:https://colah.github.io/
Twitter:https://twitter.com/ch402
■Top Bots
博客:https://www.topbots.com/
Twitter:https://twitter.com/topbots
■WildML
博客:https://www.wildml.com/
Twitter:https://twitter.com/dennybritz
■Distill
博客:https://distill.pub/
Twitter:https://twitter.com/distillpub
■Machine Learning Mastery
博客:https://machinelearningmastery.com/blog/
Twitter:https://twitter.com/TeachTheMachine
■FastML
博客:https://fastml.com/
Twitter:https://twitter.com/fastml_extra
■Adventures in NI
博客:https://joanna-bryson.blogspot.de/
Twitter:https://twitter.com/j2bryson
■Sebastian Ruder
博客:https://sebastianruder.com/
Twitter:https://twitter.com/seb_ruder
■Unsupervised Methods
博客:https://unsupervisedmethods.com/
Twitter:https://twitter.com/RobbieAllen
■Explosion
博客:https://explosion.ai/blog/
Twitter:https://twitter.com/explosion_ai
■Tim Dettwers
博客:https://timdettmers.com/
Twitter:https://twitter.com/Tim_Dettmers
■When trees fall...
博客:https://blog.wtf.sg/
Twitter:https://twitter.com/tanshawn
■ML@B
博客:https://ml.berkeley.edu/blog/
Twitter:https://twitter.com/berkeleyml
媒体作家
以下是一些人工智能领域方向顶尖的媒体作家。
■Robbie Allen:
https://medium.com/@robbieallen
■Erik P.M. Vermeulen:
https://medium.com/@erikpmvermeulen
■Frank Chen:
https://medium.com/@withfries2
■azeem:
https://medium.com/@azeem
■Sam DeBrule:
https://medium.com/@samdebrule
■Derrick Harris:
https://medium.com/@derrickharris
■Yitaek Hwang:
https://medium.com/@yitaek
■samim:
https://medium.com/@samim
■Paul Boutin:
https://medium.com/@Paul_Boutin
■Mariya Yao:
https://medium.com/@thinkmariya
■Rob May:
https://medium.com/@robmay
■Avinash Hindupur:
https://medium.com/@hindupuravinash
书 籍
以下列出的是关于机器学习、深度学习和自然语言处理的书。这些书都是免费的,可以通过网络获取或者下载。
——机器学习
■Understanding Machine Learning From Theory to Algorithms:
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/understanding-machine-learning-theory-algorithms.pdf
■Machine Learning Yearning:
https://www.mlyearning.org/
■A Course in Machine Learning:
https://ciml.info/
■Machine Learning:
https://www.intechopen.com/books/machine_learning
■Neural Networks and Deep Learning:
https://neuralnetworksanddeeplearning.com/
■Deep Learning Book:
https://www.deeplearningbook.org/
■Reinforcement Learning: An Introduction:
https://incompleteideas.net/sutton/book/the-book-2nd.html
■Reinforcement Learning:
https://www.intechopen.com/books/reinforcement_learning
——自然语言处理
■Speech and Language Processing (3rd ed. draft):
https://web.stanford.edu/~jurafsky/slp3/
■Natural Language Processing with Python:
https://www.nltk.org/book/
■An Introduction to Information Retrieval:
https://nlp.stanford.edu/IR-book/html/htmledition/irbook.html
——数 学
■Introduction to Statistical Thought:
https://people.math.umass.edu/~lavine/Book/book.pdf
■Introduction to Bayesian Statistics:
https://www.stat.auckland.ac.nz/~brewer/stats331.pdf
■Introduction to Probability:
https://www.dartmouth.edu/~chance/teaching_aids/books_articles/probability_book/amsbook.mac.pdf
■Think Stats: Probability and Statistics for Python programmers:
https://greenteapress.com/wp/think-stats-2e/
■The Probability and Statistics Cookbook:
https://statistics.zone/
■Linear Algebra:
https://joshua.smcvt.edu/linearalgebra/book.pdf
■Linear Algebra Done Wrong:
https://www.math.brown.edu/~treil/papers/LADW/book.pdf
■Linear Algebra, Theory And Applications:
https://math.byu.edu/~klkuttle/Linearalgebra.pdf
■Mathematics for Computer Science:
https://courses.csail.mit.edu/6.042/spring17/mcs.pdf
■Calculus:
https://ocw.mit.edu/ans7870/resources/Strang/Edited/Calculus/Calculus.pdf
■Calculus I for Computer Science and Statistics Students:
https://www.math.lmu.de/~philip/publications/lectureNotes/calc1_forInfAndStatStudents.pdf
Quora
Quora对于人工智能和机器学习来说是一个非常好的资源。许多业界最顶尖的研究者会对Quora上某些问题进行回答。以下,我列举了主要的人工智能相关的主题,你可以订阅如果你想跟进这些内容。
■Computer-Science (5.6M followers):
https://www.quora.com/topic/Computer-Science
■Machine-Learning (1.1M followers):
https://www.quora.com/topic/Machine-Learning
■Artificial-Intelligence (635K followers):
https://www.quora.com/topic/Artificial-Intelligence
■Deep-Learning (167K followers):
https://www.quora.com/topic/Deep-Learning
■Natural-Language-Processing (155K followers):
https://www.quora.com/topic/Natural-Language-Processing
■Classification-machine-learning (119K followers):
https://www.quora.com/topic/Classification-machine-learning
■Artificial-General-Intelligence (82K followers)
https://www.quora.com/topic/Artificial-General-Intelligence
■Convolutional-Neural-Networks-CNNs (25K followers):
https://www.quora.com/topic/Artificial-General-Intelligence
■Computational-Linguistics (23K followers):
https://www.quora.com/topic/Computational-Linguistics
■Recurrent-Neural-Networks (17.4K followers):
https://www.quora.com/topic/Recurrent-Neural-Networks
Reddit上的人工智能社区并没有Quora上的那么大,但是,Reddit上面依然有一些值得关注的资源。Reddit有助于跟进最新的业界动态和研究进展,而Quora便于进行问答交流。以下通过关注量列举了主要的人工智能领域的subreddits。
■/r/MachineLearning (111K readers):
https://www.reddit.com/r/MachineLearning
■/r/robotics/ (43K readers):
https://www.reddit.com/r/robotics/
■/r/artificial (35K readers):
https://www.reddit.com/r/artificial
■/r/datascience (34K readers):
https://www.reddit.com/r/datascience
■/r/learnmachinelearning (11K readers):
https://www.reddit.com/r/learnmachinelearning
■/r/computervision (11K readers):
https://www.reddit.com/r/computervision
■/r/MLQuestions (8K readers):
https://www.reddit.com/r/MLQuestions
■/r/LanguageTechnology (7K readers):
https://www.reddit.com/r/LanguageTechnology
■/r/mlclass (4K readers):
https://www.reddit.com/r/mlclass
■/r/mlpapers (4K readers):
https://www.reddit.com/r/mlpapers
Github
人工智能领域最令人激动的原因之一是大多数项目都是开源的,而且可以通过Github获得。如果你需要一些Python或Jupyter Notebooks实现的示例算法,在Github上有大量的这类教育资源。
■Machine Learning (6K repos):
https://github.com/search?o=descq=topic%3Amachine-learning+s=starstype=Repositoriesutf8=%E2%9C%93
■Deep Learning (3K repos):
https://github.com/search?q=topic%3Adeep-learningtype=Repositories
■Tensorflow (2K repos):
https://github.com/search?q=topic%3Atensorflowtype=Repositories
■Neural Network (1K repos):
https://github.com/search?q=topic%3Atensorflowtype=Repositories
■NLP (1K repos):
https://github.com/search?utf8=%E2%9C%93q=topic%3Anlptype=Repositories
播 客
对人工智能进行报道的播客数量在不断地增加,一部分关注最新的动态,一部分关注人工智能教育。
■ConcerningAI
官网:https://concerning.ai/
iTunes:https://itunes.apple.com/us/podcast/concerning-ai-artificial-intelligence/id1038719211
■This Week in Machine Learning and AI
官网:https://twimlai.com/
iTunes:https://itunes.apple.com/us/podcast/this-week-in-machine-learning/id1116303051?mt=2
■The AI Podcast
官网:https://blogs.nvidia.com/ai-podcast/
iTunes:https://itunes.apple.com/us/podcast/the-ai-podcast/id1186480811
■Data Skeptic
官网:https://dataskeptic.com/
iTunes:https://itunes.apple.com/us/podcast/the-data-skeptic-podcast/id890348705
■Linear Digressions
官网:https://itunes.apple.com/us/podcast/linear-digressions/id941219323
iTunes:https://itunes.apple.com/us/podcast/linear-digressions/id941219323?mt=2
■Partially Dervative
官网:https://partiallyderivative.com/
iTunes:https://itunes.apple.com/us/podcast/partially-derivative/id942048597?mt=2
■O'Reilly Data Show
官网:https://radar.oreilly.com/tag/oreilly-data-show-podcast
iTunes:https://itunes.apple.com/us/podcast/oreilly-data-show/id944929220
■Learning Machines 101
官网:https://www.learningmachines101.com/
iTunes:https://itunes.apple.com/us/podcast/learning-machines-101/id892779679?mt=2
■The Talking Machines
官网:https://www.thetalkingmachines.com/
iTunes:https://itunes.apple.com/us/podcast/talking-machines/id955198749?mt=2
■Artificial Intelligence in Industry
官网:https://techemergence.com/
iTunes:https://itunes.apple.com/us/podcast/artificial-intelligence-in-industry-with-dan-faggella/id670771965?mt=2
■Machine Learning Guide
官网:https://ocdevel.com/podcasts/machine-learning
iTunes:https://itunes.apple.com/us/podcast/machine-learning-guide/id1204521130?mt=2
时事通讯媒体
如果你想了解最新的业界消息和学术进展,这里有大量的时事通讯媒体供你选择。
■The Exponential View:
https://www.getrevue.co/profile/azeem
■AI Weekly:
https://aiweekly.co/
■Deep Hunt:
https://deephunt.in/
■O’Reilly Artificial Intelligence Newsletter:
https://www.oreilly.com/ai/newsletter.html
■Machine Learning Weekly:
https://mlweekly.com/
■Data Science Weekly Newsletter:
https://www.datascienceweekly.org/
■Machine Learnings:
https://subscribe.machinelearnings.co/
■Artificial Intelligence News:
https://aiweekly.co/
■When trees fall…:
https://meetnucleus.com/p/GVBR82UWhWb9
■WildML:
https://meetnucleus.com/p/PoZVx95N9RGV
■Inside AI:
https://inside.com/technically-sentient
■Kurzweil AI:
https://www.kurzweilai.net/create-account
■Import AI:
https://jack-clark.net/import-ai/
■The Wild Week in AI:
https://www.getrevue.co/profile/wildml
■Deep Learning Weekly:
https://www.deeplearningweekly.com/
■Data Science Weekly:
https://www.datascienceweekly.org/
■KDnuggets Newsletter:
https://www.kdnuggets.com/news/subscribe.html?qst
会 议
随着人工智能的崛起,与人工智能相关的会议也在逐渐增加。这里列举一些主要的会议。
——学术会议
■NIPS (Neural Information Processing Systems):
https://nips.cc/
■ICML (International Conference on Machine Learning):
https://2017.icml.cc
■KDD (Knowledge Discovery and Data Mining):
https://www.kdd.org/
■ICLR (International Conference on Learning Representations):
https://www.iclr.cc/
ACL (Association for Computational Linguistics):
https://acl2017.org/
■EMNLP (Empirical Methods in Natural Language Processing):
https://emnlp2017.net/
■CVPR (Computer Vision and PatternRecognition):
https://cvpr2017.thecvf.com/
■ICCF(InternationalConferenceonComputerVision):
https://iccv2017.thecvf.com/
——专业会议
■O’Reilly Artificial Intelligence Conference:
https://conferences.oreilly.com/artificial-intelligence/
■Machine Learning Conference (MLConf):
https://mlconf.com/
■AI Expo (North America, Europe, World):
https://www.ai-expo.net/
■AI Summit:
https://theaisummit.com/
■AI Conference:
https://aiconference.ticketleap.com/helloworld/
论 文
——arXiv.org上特定领域论文集
■Artificial Intelligence:
https://arxiv.org/list/cs.AI/recent
■Learning (Computer Science):
https://arxiv.org/list/cs.LG/recent
■Machine Learning (Stats):
https://arxiv.org/list/stat.ML/recent
■NLP:
https://arxiv.org/list/cs.CL/recent
■Computer Vision:
https://arxiv.org/list/cs.CV/recent
——Semantic Scholar搜索结果
■Neural Networks (179K results):
https://www.semanticscholar.org/search?q=%22neural%20networks%22sort=relevanceae=false
■Machine Learning (94K results):
https://www.semanticscholar.org/search?q=%22machine%20learning%22sort=relevanceae=false
■Natural Language (62K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22sort=relevanceae=false
■Computer Vision (55K results):
https://www.semanticscholar.org/search?q=%22natural%20language%22sort=relevanceae=false
■Deep Learning (24K results):
https://www.semanticscholar.org/search?q=%22deep%20learning%22sort=relevanceae=false
此外,一个很好的资源是Andrej Karpathy维护的一个用于搜索论文的项目。
https://www.arxiv-sanity.com/
---------------------------------------
ImageQ:专业的大数据服务应用平台
登录www.imageq.cn,免费申请【产品试用】